
Bachelor’s Thesis

Categorical Distributional Reinforcement Learning
Finite-Time Analysis and Application with Risk-Sensitive Policies

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Technical Mathematics

by

Markus Böck
Registration Number: 01634838

under the supervision of
Assoc. Prof. Dr.techn. Dipl.-Ing. Clemens Heitzinger
Institute of Analysis and Scientific Computing, TU Wien

Vienna, July 22, 2020

Abstract

In distributional reinforcement learning the entire distribution of returns is modelled,
rather than just their expected value. In this work, the particular framework of using
categorical distributions as approximation method is reviewed and subject to finite-time
analysis. It is shown that even though one gains significantly more information about
the return, the sample complexity of categorical distributional reinforcement learning al-
gorithms is essentially equivalent to their value-based counterparts in the tabular case.
While distributional methods proved popular in large scale applications when maximising
the expected return, it is argued that the real benefit of having the entire return distri-
butions at hand lies in the optimisation of risk-sensitive objectives. Incorporating risk
measures into policy iteration methods is shown to be theoretically limited; however, in
a simple gridworld problem such algorithms achieved the desired goal. Lastly, the appli-
cation of distributional reinforcement learning methods to the problem of finding optimal
sepsis treatment strategies is considered.

i

Kurzfassung

Reinforcement Learning mit Verteilungen befasst sich damit, anstelle des erwarteten Ge-
winns, die gesamte Verteilungsfunktion des Gewinns zu modellieren. In dieser Arbeit
wird der Ansatz kategorische Verteilungen als Annäherungsmethode zu verwenden be-
handelt. Im tabularen Fall ist diese Methode Gegenstand von Konvergenzanalyse. Es
wird gezeigt, dass obwohl man signifikant mehr Information über den Gewinn erhält, ist
die Stichprobenkomplexität von Algorithmen basierend auf kategorischen Verteilungen im
Wesentlichen äquivalent zu deren Erwartungswert-basierenden Pendants. Während sich
Reinforcement Learning mit Verteilungen vor allem bei Anwendungen im großen Maßstab
ausgezeichnet hat, wird argumentiert, dass die Verfügbarkeit der Gewinnverteilung den
Einsatz in der Optimierung von risikosensitiven Problemen als wahren Vorteil hat. Es
stellt sich heraus, dass das Verwenden von Risikomaße in Policy-Iteration Algorithmen
theoretisch eingeschränkt ist, jedoch wurde in einem einfachen Gridworld-Problem das
angestrebte Ziel mit solchen Methoden erreicht. Abschließend wird der Einsatz von Rein-
forcement Learning mit Verteilungen in der Suche nach einer optimalen Behandlung von
Sepsis in Erwägung gezogen.

ii

Contents

1 Introduction 1
1.1 Markov Decision Processes . 2
1.2 Distributional Reinforcement Learning . 2

1.2.1 The Return Distribution . 2
1.2.2 Distributional Bellman Equation and Operators 4

2 Categorical Distributional Reinforcement Learning 6
2.1 The C51 Algorithm . 6
2.2 Tabular Categorical DRL . 8
2.3 Alternative Approximation Methods . 10

2.3.1 Model-based Approximations . 10
2.3.2 Model-free Approximations . 11

3 Finite-Time Analysis 12
3.1 Complexity of Q-Learning and Speedy Q-Learning 12
3.2 Speedy Categorical Policy Evaluation . 13

3.2.1 Complexity of SCPE . 14
3.2.2 Analysis . 15

3.3 Policy Control . 21

4 Safe Reinforcement Learning 23
4.1 Risk-Sensitive Optimisation Criteria . 23
4.2 Problems of Risk-Averse Policy Iteration . 24
4.3 Current Approaches to Risk-Averse DRL . 28

5 Experimental Results 30
5.1 Combination Lock . 30
5.2 Gridworld with Lake . 31
5.3 Sepsis Treatment . 33

6 Discussion 35

iii

Chapter 1

Introduction

Besides supervised and unsupervised learning, reinforcement learning (RL) is a fundamen-
tal paradigm of machine learning. RL comprises goal-oriented methods, in which an agent
aims to learn optimal action strategies through interaction with his environment. Only
a reward signal helps the agent to deduce which actions have favourable or unfavourable
outcome. This trial and error style of learning closely resembles human learning and is
suited for many real world applications.

The effectiveness of RL proved itself throughout history. In 2016, a team at Google Deep-
mind presented AlphaGo, a program which learns to play the popular Chinese board game
Go based on RL techniques. The resulting agent remarkably defeated the 18-time world
champion Lee Sedol, winning 4 out of 5 games. The challenge of developing strong Go
programs is the difficulty of finding an evaluation function – a function determining which
board configuration favours which player. This renders search methods based on expert
knowledge, which were used for chess programs, not applicable. Learning by playing, as
suggested by RL, turned out to be the better choice [23, Chapter 16].

In standard RL, the performance of the agent is modelled as the expected sum of all
future rewards – the expected return. In this work however, we focus on distributional
reinforcement learning (DRL) where the entire distribution of the return is modelled
directly. The interest in this subfield was rekindled by [2] in 2017 and DRL is currently an
active area of research. As we have more information about the consequences of actions,
a wide range of new possibilities for designing algorithms is offered.

Firstly, in order to introduce the mathematical notation used throughout this work, the
formalisation of the RL objective in terms of a Markov Decision Processes will be stated.
The DRL framework will be presented and a motivating example showing the potential
benefits of DRL will be given. Naturally, the challenge of choosing a distribution ap-
proximation method arises and in this work the focus will be on categorical distributions.
This method will be subject to complexity analysis in order to compare its performance
to value-based RL methods. As already mentioned, modelling the distribution allows us a
detailed view on the outcome of actions and offers the possibility of learning risk-sensitive
strategies. However, designing algorithms for such tasks is challenging and the limitations
of including risk measures in policy iteration methods will be examined. Lastly, the dis-
cussed methods will be tested on toy problems and an application to the medical problem
of sepsis treatment will be considered.

1

1.1 Markov Decision Processes

The RL objective is formalised by a Markov Decision Process. The three main components
are a set of states which represents the environment, a set of actions through which the
agent can interact with the environment and a reward signal [2, 23].

Definition 1.1. A Markov Decision Process (MDP) is a tuple 〈X ,A, R, P 〉, where X is a
set of states, A is a set of actions and R(x, a) is a random variable for each (x, a) ∈ X ×A
representing the immediate reward when transitioning from (x, a).
Trajectories (Xt, At) are obtained through the selection of actions at given states, where
the probabilities of state transitions are defined by the deterministic function P such that

P
[
Xt+1 = x′|Xt = x,At = a

]
= P (x′|x, a).

Furthermore, a MDP has the Markov property. State transition probabilities only depend
on the current state and not on the history of predecessors, i.e.,

P
[
Xt+1 = x′|Xt, At, Xt−1, At−1, . . . , X0, A0

]
= P

[
Xt+1 = x′|Xt, At

]
.

The dynamics of a MDP are determined by a single function p : R × X × X ×A → [0, 1]
such that ∫

R
p(r, x′|x, a)dr = P (x′|x, a).

In addition to the state transition probabilities, the function p also captures the random-
ness of the immediate reward R(x, a).

Action strategies of the agent are described by the notion of a policy.

Definition 1.2. A policy π is a mapping from states to probabilities of selecting each
possible action. For all s ∈ X and a ∈ A

0 ≤ π(a|s) ≤ 1,
∑
a∈A

π(a|s) = 1.

However, it is often convenient to think of policies as random variables from states to
actions π : X → A with

P [π(s) = a] = π(a|s).
If there is an action a for each state s such that P [π(s) = a] = 1, the policy can be con-
sidered a mapping from states to actions and is called deterministic, otherwise stochastic.

1.2 Distributional Reinforcement Learning

1.2.1 The Return Distribution

Definition 1.3. For a given MDP 〈X ,A, R, P 〉 and discount factor γ ∈ (0, 1), the return
at (x, a) ∈ X ×A is the sum of discounted rewards along a trajectory following the policy
π after starting in state x and taking action a, i.e.,

Zπ(x, a) :=
∞∑
t=0

γtR(Xt, At),

where X0 = x, A0 = a, Xt+1 ∼ P (·|Xt, At), At+1 ∼ π(·|Xt+1).

The function Zπ, mapping state-action pairs to random variables, is called return distri-
bution function. The set of all return distribution functions is denoted by Z.
In order to shorten notation, we often write Rt := R(Xt, At) and Zπ(x, a) =

∑∞
t=0 γ

tRt.

2

For proofs it is often useful to make use of the induced probability measure instead of the
random variable. For this matter, we define the probability measure

η(x,a)
π ((−∞, z]) := P [Zπ(x, a) ≤ z] .

With this construction we have

Zπ(x, a) ∼ η(x,a)
π for all (x, a) ∈ X ×A. (1.1)

The function ηπ : X×A →P(R), (x, a) 7→ η
(x,a)
π may also be referred as return distribution

function [2, 19]. Here P(R) denotes the set of all probability measures supported on R.

As alluded to in the introduction, the objective of RL is to maximise the expected return
at each state-action pair. For this task it is sufficient to consider only the state-action
value function of a policy π defined by

Qπ(x, a) = E [Zπ(x, a)] .

The state-value function of an optimal policy π∗ satisfies

Qπ
∗(x, a) = Q∗(x, a) := sup

π
Qπ(x, a),

where Q∗ is called the optimal state-action value function.

But if we only care about the expected value, why bother modelling the return distribution
as a whole? Following example shows that the expected value cannot be trusted in all
applications and may lead to unexpected results. In Chapter 4 we address this problem
by considering the inclusion of risk measures in the action selection process.
Example. Consider a gridworld environment in which the agent has the possibility of
moving in four directions. In order to add randomness, the environment only accepts the
action 90% of the times, otherwise it moves the agent in a random direction. The objective
of the agent is to move from the start cell (marked with S) to the goal cell (marked with
G). To make things difficult, there is a lake between these cells (marked with blue colour).
If the agent lands on a lake cell, there is 1% chance of drowning, resulting in a reward of
−100. Note that this setup is similar to the cliff walking problem in [23].
Consider two policies, whose trajectories are drawn in Figure 1.1a. The policy going
straight through the lake will be regarded as the risky policy. The second policy, the safe
policy, takes the path around the lake, which increases the probability of reaching the goal
cell and receiving the reward of +100. However, more steps are required and we have a
discount factor of γ = 0.95 which decreases the return for long trajectories.

S G

(a) Gridworld with lake and two policies (b) Histograms of return at start state

Figure 1.1: Environment with a risky and a safe policy

3

In Figure 1.1b you can see the histograms of the return after simulating 106 trajectories
for both policies. The risky policy has a return of 30.84 ± 35.52, whereas the safe one
has a return of 24.08± 3.74. In standard RL one would conclude that the risky policy is
better. However, in DRL we can do further analysis. For example, the risky policy has
around 10% chance of drowning (note the probability mass left of 0), while the safe one
only drowns in 0.01% of the tries and only due to the randomness of the environment.
One could argue that if we care so much about drowning, we would choose a different
setup. For example, punishing drowning by a greater negative reward or increasing the
discount factor. However, in many applications the environment is difficult to understand
and the choice of a reward function is not straightforward. In these case, the availability
of the return distribution is undeniably of great benefit.

1.2.2 Distributional Bellman Equation and Operators

In the heart of RL lies the Bellman equation [3]. It relates the return of a state to the
return of its successor states.

Theorem 1.4. For the random transition (x, a) → (X ′, A′), the distributional Bellman
equation is given by

Zπ(x, a) D= R(x, a) + γZπ(X ′, A′).
The equality indicates that the random variable on the left hand side and the one on the
right hand side are identically distributed.

Like the Bellman equation, Bellman operators play an important role in reinforcement
learning. In standard RL they are defined in terms of the state-action value functions
Q : X ×A → R by

T πQ(x, a) := E
[
R(x, a) + γQ(X ′, A′)

]
,

T Q(x, a) := E
[
R(x, a) + γmax

a′∈A
Q(X ′, a′)

]
,

where X ′ ∼ p(·|x, a) and A′ ∼ π(·|X ′). These operators are called Bellman operator
and Bellman optimality operator, respectively. They are clearly defined with the Bellman
equation in mind and have the property that a fixed point of T π is the state-action value
function Qπ and a fixed point of T is the optimal state-action value function Q∗. Both
are γ-contractions in the supremum norm ‖.‖∞, which is used in convergence proofs for
Q-learning [24].
The extension of Bellman operators to distributions is straightforward.

Definition 1.5. The distributional Bellman operator T π : Z → Z is defined by

T πZ(x, a) := R(x, a) + γZ(X ′, A′), X ′ ∼ p(·|x, a), A′ ∼ π(·|X ′)

and the distributional Bellman optimality operator T : Z → Z by

T Z := R(x, a) + γZ(X ′, A∗), X ′ ∼ p(·|x, a), A∗ = arg max
a∈A

E
[
Z(X ′, a)

]
.

Proposition 1.6. T πZπ(x, a) ∼ T πη(x,a), where the probability measure T πη(x,a) is de-
fined by its cumulative distribution function

FT πη(x,a)(z) = E
[
Fη(X′,A′)(

z −R(x, a)
γ

)
]

=
∫
R

∑
(x′,a′)∈X×A

Fη(x′,a′)(
z − r
γ

)π(a′|x′)p(r, x′|x, a)dr.
(1.2)

4

Proof. Follows immediately from relationship (1.1) and Definition 1.5.

Analogously to value-based RL, we would like to find a metric such that T π and T : Z → Z
are contraction mappings with a unique fixed point. [2] proposed to use the Wasserstein
distance.

Definition 1.7. Let µ, ν ∈Pp(R) be probability measures with p-th finite moments.
The p-Wasserstein distance between µ and ν is given by

wp(µ, ν) :=
∥∥∥F−1

µ − F−1
ν

∥∥∥
Lp(0,1)

,

where F−1 denotes the respective quantile function and ‖.‖Lp(0,1) is the norm of the Lp-
space on the interval (0, 1). The Wasserstein distance between two random variables is
defined equivalently,

wp(U, V) :=
∥∥∥F−1

U − F−1
V

∥∥∥
Lp(0,1)

.

By taking the supremum over all state-action pairs this distance can be extended to return
distribution functions, i.e.,

wp(Z1, Z2) := sup
(x,a)∈X×A

wp(Z1(x, a), Z2(x, a)).

Indeed, [2, Lemma 3] confirms that T π is a contraction in the Wasserstein distance.

Proposition 1.8. T π is a γ-contraction in wp.

By Banach’s fixed point theorem Proposition 1.8 guarantees that Zπ = limn→∞(T π)nZ0
in wp for any initial guess Z0 ∈ Z. Essentially, this verifies that policy evaluation works
in the distributional setting.
However, policy control, where we are concerned with T and seek to find optimal policies,
causes problems. [2, Prop. 1 – 3] provides three negative results:

• T is not a contraction in wp.

• In general, T does not have a fixed point.

• Even if T has a fixed point, convergence of T nZ0 to it is not guaranteed.

This constitutes a fundamental challenge in DRL. However, it was possible to recover
convergence in the control setting in a weaker sense [2, Theorem 1], which we do not
examine further.
In the following chapter we will consider the Cramér distance. For this metric the op-
timality operator is also not a contraction. Generally, it is very unlikely that there is a
metric which yields the desired contraction properties of T : Z → Z.

5

Chapter 2

Categorical Distributional
Reinforcement Learning

In categorical DRL the return distributions are approximated by a finite set of fixed
atoms. [2] used this approximation method in conjunction with a deep neural network and
achieved convincing experimental results. After presenting this algorithm, called C51, we
take a look at categorical DRL methods in the tabular case, where convergence results have
been established [19]. Finally, a few alternative approximation methods will be presented.

2.1 The C51 Algorithm

As mentioned, the approach of [2] was to approximate the return distributions with a finite
set of fixed atoms. They set bounds for the return Vmin, Vmax and then used N equally
spaced atoms {Vmin + (i− 1)∆z : i = 1, . . . , N}, ∆z = (Vmax − Vmin)/(N − 1) as support
for the distributions. The algorithm is called C51 because the choice of 51 atoms resulted
in especially good empirical performance. The distributions supported on a finite support
are called categorical distributions.
Definition 2.1. Let δzi be the Dirac measure at zi. The set of categorical distributions
is defined as

Pz :=
{

N∑
i=1

piδzi : pi ≥ 0,
N∑
i=1

pi = 1
}
⊂P(R).

Since the Bellman operator scales the return distribution by γ and translates it by the re-
ward, the categorical distributions are not closed under this operation and it was necessary
to find a way to project a distribution back on the fixed support.
Definition 2.2. The categorical projection operator ΠC : Py → Pz is given by

ΠC(δyj) :=

δz1 , yj ≤ z1,
zi+1−yj
zi+1−zi δzi + yj−zi

zi+1−zi δzi+1 , zi < yj ≤ zi+1,

δzN , yj > zN ,

ΠC

(
N∑
i=1

piδyi

)
=

N∑
i=1

piΠC(δyi)

(2.1)
In the case of categorical distributions, the operator ΠC basically distributes the probability
of a point among the two neighbouring fixed atoms.
This operator can also be defined on the set of all distributions ΠC : P(R) → Pz by
specifying the cumulative distribution function

FΠCν(zi) = 1
zi+1 − zi

∫ zi+1

zi

Fν(x)dx, FΠCν(zN) = 1. (2.2)

6

Definition (2.2) simplifies to (2.1) for ν ∈ Py. In the following ΠC will also be used on
P(R)X×A, where it is meant elementwise.

The C51 algorithm was implemented as an improvement to the DQN algorithm [16], where
the objective is to play Atari 2600 games. The backbone of DQN is a deep neural network
consisting of convolutional and fully connected layers. The neural network takes in pixel
data and estimates the state-action value function Qπ.
Reference [2] used the same network architecture as DQN, which is formally described
by a parametric model θ : X × A → RN . In order to obtain probabilities, the softmax
function is applied to the final output of the network, i.e.,

Zθ(x, a) = zi w.p. pi := pθi (x, a) = exp(θi(x, a))∑N
j=1 exp(θj(x, a))

.

For a sample transition (x, a, r, x′) the Bellman optimality operator T is estimated by

yi = T̂ Zθ(x, a)i = r + γzi w.p. qi := pθi (x′, a∗),

where a∗ is the current greedy action in x′ (with respect to the expected return).

After calculating the categorical projection, learning is done by minimising the cross en-
tropy loss via a gradient descent method with respect to θ, i.e.,

minimiseθ −
N∑
i=1

qi log(pi) for ΠC T̂ Zθ(x, a) ∼ q, Zθ(x, a) ∼ p.

The C51 Algorithm as described is shown in Algorithm 1. Here one can see how the
categorical projection can be implemented programmatically.

Algorithm 1 C51 [2, Algorithm 1]
1: Require: Parametric model θ(x, a), 0 < γ < 1, bounds for reward Vmin, Vmax, number

of fixed atoms N
2: Input: State transition xt, at, rt, xt+1
3: Q(xt+1, a) :=

∑N
i=1 zip

θ
i (xt+1, a)

4: a∗ ← arg maxaQ(xt+1, a) # find greedy action
5: qi = 0, i ∈ 1, . . . , N
6: # Compute ΠC T̂ Zθ(xt, at)
7: for j ∈ 1, . . . , N do
8: T̂ zj ← [rt + γzj]Vmax

Vmin
clipped to [Vmin, Vmax]

9: bj ← (T̂ zj − Vmin)/∆z + 1 # ∈ [1, N]
10: l← bbjc, u← dbje # neighbouring atoms zl ≤ T̂ zj ≤ zu
11: # Distribute probabilities
12: if l = u then
13: ql ← ql + pθj(xt+1, a

∗)
14: else
15: qu ← qu + pθj(xt+1, a

∗)(u− yj)
16: ql ← ql + pθj(xt+1, a

∗)(yj − l)
17: end if
18: end for
19: lossθ ← −

∑N
i=1 qi log pθi (xt, at) # cross entropy loss

20: Perform gradient descent step with respect to θ.

7

Even though rendering convincingly effective in experiments, the success could not be
explained by theoretical results. In the case of tabular or linear function models of the
state space, [14] proved that the distributional methods perform equivalently to their value
based counterparts in the sense that the same policies are obtained when maximising the
expected return. However, this equivalence ends at non-linear function approximations.
They were not able to explain the performance improvements of the categorical approach
in conjunction with deep neural networks, but it is conjectured that distributions may
have a regularizing effect in optimisation for neural networks.

2.2 Tabular Categorical DRL

In the tabular case, instead of using function approximation in form of a parametric model,
the return at each state-action pair (x, a) ∈ X ×A is kept track of individually.
For the sample (xt, at, rt, xt+1) and at+1, chosen by a policy or greedily in case of policy
control, updates are performed in a stepsize controlled manner, i.e.,

η
(xt,at)
t+1 ← (1− αt)η(xt,at)

t + αtΠC
(
T̂ η(xt,at)

t

)
,

η
(x,a)
t+1 ← η

(x,a)
t ∀(x, a) 6= (xt, at),

(2.3)

where η
(x,a)
t =

N∑
i=1

p
(x,a)
t,i δzi ∈ Pz and T̂ η(xt,at)

t =
N∑
i=1

p
(xt+1,at+1)
t,i δrt+γzi .

This update rule is the (categorical) distributional counterpart of the one-step temporal
difference learning / Q-learning update rule [23, 25]. Therefore, there is also a close the-
oretical connection between these methods. The following proposition essentially shows
that the same policies are obtained in both the distributional and the value-based version.

Proposition 2.3. [14, Prop. 5] Tabular Categorical DRL is equivalent to one-step tem-
poral difference learning / Q-learning in expectation.
Let z1 ≤ −Rmax

1−γ and zN ≥ Rmax
1−γ and ηt be obtained by the update rule 2.3. Furthermore,

let η(x,a)
0 ∈ Pz, Q0(x, a) := E

Z∼η(x,a)
0

[Z]. The state-action value functions are updated by

Qt+1(x, a)←
{

(1− αt)Qt(xt, at) + αt(rt + γQt(xt+1, at+1)), (x, a) = (xt, at),
Qt(x, a), otherwise.

Then
Qt(x, a) = E

Z∼η(x,a)
t

[Z]

for all (x, a) ∈ X ×A and t ≥ 0.

It was discovered that there is fundamental geometric connection between the categorical
projection operator ΠC and the Cramér distance, defined as follows.

Definition 2.4. For two probability measures µ, ν ∈P(R) the Cramér distance is given
by

`2(µ, ν) =
(∫

R
|Fµ(x)− Fν(x)|2dx

)1/2
. (2.4)

Once again by taking the supremum over all state-action pairs, this metric can be extended
to return distribution functions by defining

`2(η, ξ) := sup
(x,a)∈X×A

`2(η(x,a), ξ(x,a)).

8

On the set of signed measures ν with ‖Fν‖L2 <∞ the Cramér distance is induced by the
inner product

〈µ, ν〉`2 =
∫
R
Fµ(x)Fν(x)dx.

In general, the combination of the categorical projection and the Bellman operator ΠCT π
is not a contraction in the Wasserstein distance; however, it is in the Cramér distance.
This follows from the aforementioned underlying geometric connection. That is, ΠC is an
orthogonal projection on a certain set of measures. For more details, see the proof of the
following proposition.

Proposition 2.5. [19, Prop. 2] ΠCT π : Pz → Pz is a √γ-contraction in `2.

Proof. First, T π will be shown to be a √γ-contraction in `2. Secondly, by considering a
certain Hilbert space of signed measures, ΠC will be shown to be a orthogonal projection.
As concatenation of these operators, ΠCT π is then also a √γ-contraction in `2.
For each (x, a) in X ×A we have

`22

(
(T πη)(x,a), (T πξ)(x,a)

)
=
∫
R
|F(T πη)(x,a)(z)− F(T πξ)(x,a)(z)|2dz

=
∫
R

∣∣∣∣∣∣
∫
R

∑
(x′,a′)∈X×A

(
Fη(x′,a′)(

z − r
γ

)− Fξ(x′,a′)(
z − r
γ

)
)
π(a′|x′)p(r, x′|x, a)dr

∣∣∣∣∣∣
2

dz

≤ γ
∫
R

∑
(x′,a′)∈X×A

∫
R

∣∣∣Fη(x′,a′)(y)− Fξ(x′,a′)(y)
∣∣∣2 dy π(a′|x′)p(r, x′|x, a)dr

≤ γ sup
(x′,a′)∈X×A

∫
R

∣∣∣Fη(x′,a′)(y)− Fξ(x′,a′)(y)
∣∣∣2 dy = γ`

2
2(η, ξ).

The first inequality follows by substituting y = z−r
γ in the inner integral, applying Jensen’s

inequality for |.|2, and finally rearranging the integrals. By taking the supremum over all
(x, a) ∈ X ×A and taking the square root it follows that T π is a √γ-contraction in `2.
Let M0 be the Hilbert space of finite signed measures with µ(R) = 0 and ‖Fµ‖L2 < ∞
equipped with the inner product 〈·, ·〉`2 . Then δ0 +M0 contains the set of measures ν
with

∫ 0
−∞ Fν(t)2dt < ∞ and

∫∞
0 (1 − Fν(t))2dt < ∞ and is also a Hilbert space with

〈δ0 + µ, δ0 + ν〉 = 〈µ, ν〉`2 .
It follows from 2.2 that the projection ΠC minimises 〈Πν − ν,Πν − ν〉`2 =

∫
R |FΠν(x) −

Fν(x)|2dx. As span(Pz) is a finite dimensional (and thus closed) subspace, ΠC is an
orthogonal projection from δ0 +M0 to span(Pz) and therefore a non-expansion.

The analysis of [19] was concluded by showing that we get improved accuracy as we
increase the number of atoms and that we have convergence both in policy evaluation and
policy control.

Proposition 2.6. Let ηC = limn→∞(ΠCT π)nη0 proven to exist by Proposition 2.5. If the
true return distribution η(x,a)

π is supported on [z1, zN] for all states and actions (x, a), then

`
2
2(ηC , ηπ) ≤ 1

1− γ max
1≤i<N

(zi+1 − zi).

9

Theorem 2.7 (Policy Evaluation). Let π be a policy. Suppose that

i) the usual stepsize conditions hold, i.e.
∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞;

ii) the distributions of the initial estimate η(x,a)
0 have support contained in [z1, zN].

Then
`2(ηt, ηC)

t→∞−→ 0 almost surely,

where ηC = limn→∞(ΠCT π)nη0 is the limiting return distribution function proven to exist
by Proposition 2.5.

Theorem 2.8 (Policy Control). Suppose that the assumptions of Theorem 2.7 hold. Fur-
thermore, let z1 ≤ −Rmax

1−γ and zN ≥ Rmax
1−γ and assume that there exists a unique optimal

policy π∗.
Then there exists a return distribution function η∗C with

`2(ηt, η∗C)
t→∞−→ 0 almost surely.

The greedy policy with respect to η∗C is π∗.

2.3 Alternative Approximation Methods

2.3.1 Model-based Approximations

As discussed in the previous section, in categorical DRL we consider distributions over a
fixed finite support, i.e., we consider

Pz =
{

N∑
i=1

piδzi : pi ≥ 0,
N∑
i=1

pi = 1
}
.

This approximation method is highly expressive as one obtains increased accuracy com-
pared to the true return distribution by increasing the number of atoms, see Proposition
2.6. However, it comes with two drawbacks: First, we need to be able to set reasonable
bounds for the return (Vmin and Vmax). Secondly, we have to store N parameters per
state-action pair, which can lead to huge tables.
Reference [18] considered the following distribution models with only a few parameters:

i) Gaussian distributions

f(x;µ, σ) = 1√
2πσ

exp
(
−(x− µ)2

2σ2

)
, where µ ∈ R, σ > 0,

ii) (skewed) Laplace distributions

f(x;m, b, c) = c(1− c)
b

{
exp(1−c

b (x−m)), if x < m,

exp(− c
b(x−m)), otherwise,

where m ∈ R, b > 0, c ∈ (0, 1).

For each state-action pair only two or three parameters are needed. In the work of [18], the
cross entropy loss between return distribution ηt and estimated Bellman update T̂ ηt was
minimised via gradient descent, similar to the C51 algorithm. The selection of the above
distribution families allowed them to derive explicit update rules for the parameters.

10

2.3.2 Model-free Approximations

Quantile Regression

In DRL with Quantile Regression [6] one makes no assumption on the return distribution
and aims to learn the quantile function F−1. Consider N fixed, equally spaced quan-
tiles τi := i

N , i = 1, . . . , N . Then the expected value of a random variable Z can be
approximated by

E [Z] = E
[
F−1
Z (U)

]
≈ 1
N

N∑
i=1

F−1
Z (τi),

where U ∼ U([0, 1]) is uniformly distributed on the interval [0, 1].
In a way, this strategy transposes the parametrisation of the categorical approach. Instead
of fixing the locations and learning their probabilities, one fixes the probabilities and
learns their locations (quantiles). An immediate advantage is that one no longer needs to
determine bounds for the return.
Reference [6] developed an algorithm based on the method of quantile regression. Here
one finds a τ -quantile of a distribution η by minimising the loss

LτQR(θ) = EZ∼η [(τ1Z>θ + (1− τ)1Z≤θ)|Z − θ|] ,

where 1 denotes the indicator function. They were also able to backup their algorithm by
establishing a contraction result in the 1-Wasserstein distance.

Particles

Reference [17] proposed to use a finite set of particles vx,n, n = 1, . . . , N , for each state
x ∈ X . The return distribution in this state is then estimated by the empirical cumulative
distribution function,

Fηx(z) ≈ 1
N

N∑
n=1

1vx,n≤z.

For a transition x → x′ with reward r updates are performed by randomly (uniformly)
selecting indices p, q ∈ 1, . . . , N and setting

vx,p ← r + γvx′,q.

The number of updated particles of state x is controlled by a learning rate. Increasing the
total number of particles achieves higher approximation accuracy.
Storing a large amount of particles for each state is very expensive and only feasible for
small state-actions spaces. However, we have the benefit that we need not have knowledge
about bounds for the return as in categorical DRL.

Figure 2.1: Comparison of approximation methods (blue) and true distribution (orange).
Left to right: Categorical distribution with 15 atoms, Gaussian model, 15 quantiles, 100
particles (samples drawn).

11

Chapter 3

Finite-Time Analysis

As the goal of DRL is to estimate return distributions, rather than only the expected
return, one might assume that with this more challenging task comes also the need for
more transition samples to accurately approximate the distributions. By performing a
finite-time analysis so called probably approximately correct (PAC) bounds for tabular
categorical DRL algorithms are established and we come to the conclusion that the sample
complexity is essentially the same as for the value based algorithmic counterparts.

3.1 Complexity of Q-Learning and Speedy Q-Learning

The following notation is used to compare the complexity of algorithms.

Definition 3.1. For two functions f and g : D ⊆ Rd → [0,∞) we define

f = O(g) :⇐⇒ ∃C > 0 : f(x) ≤ Cg(x) ∀x ∈ D,
f = Ω(g) :⇐⇒ g = O(f),
f = Θ(g) :⇐⇒ f = O(g) and f = Ω(g).

Lastly, since logarithmic factors are often insignificant we write

f = Õ(g) :⇐⇒ ∃C1, C2 > 0 : f(x) ≤ C1g(x) logC2(g(x)) ∀x ∈ D.

Note that all inequalities are required to hold on the entire domain D. This is uncommon
but sufficient for our purposes.

Now we are ready to examine the complexity of standard Q-learning [25]. Recall that for
a sample (x, a, r, x′) the update rule reads as

Qk+1(x, a) = (1− αk(x, a))Qk(x, a) + αk(x, a)(r + γmax
a∈A

Qk(x′, a)). (3.1)

If we assume the usual stepsize conditions
∑∞
k=0 αk(x, a) = ∞ and

∑∞
k=0 α

2
k(x, a) < ∞,

convergence to the optimal state-action-value function Q∗ is guaranteed [24].
It is convenient to neglect the exploration process at first and assume that updates are
performed synchronously – at each timestep k all (x, a) ∈ X ×A are updated. The result
can then be extended to the asynchronous case, which we will not consider, since the
synchronous case will be sufficient for the comparison to categorical DRL.
In [7], the authors assume a finite state-action space n = |X ×A|, a discount factor γ < 1,
that the reward is bounded by Rmax and polynomial learning rates αk = 1

(k+1)ω , where

12

0.5 < ω < 1. It follows that the return is also bounded by Vmax := βRmax, where β := 1
1−γ .

Under these assumptions it was proved that

P [‖Q∗ −QT ‖∞ ≤ ε] ≥ 1− δ for T = Ω

[β2V 2
max log nVmax

δε

ε2

] 1
ω

+
[
β log Vmax

ε

] 1
1−ω

 .
(3.2)

Inequalities of this form are called probably approximately correct (PAC) bounds, as they
provide a lower bound for the time T such that QT is close to the solution with high
probability.
The bound (3.2) seems quite complicated at first glance, but if γ is close to 1, one can
argue that β becomes the dominant term and the bound is optimised for ω = 4/5. Recall
that increasing T by 1 means looping over the entire state-action space and thus 2n
samples (reward and next state) are taken. This yields a sample complexity of Õ(nβ5/ε2.5),
omitting logarithmic factors.

In more recent developments, [10] introduced a faster variant of Q-learning and gave it
the name speedy Q-learning (SQL). They defined an update rule based on two previous
timesteps instead of just one, i.e.,

Qk+1(x, a) = Qk(x, a)+αk(TkQk−1(x, a)−Qk(x, a))+(1−αk)(TkQk(x, a)−TkQk−1(x, a)),
(3.3)

where TkQ(x, a) = r+γmaxa∈AQ(x′, a) and the learning rate is linear, αk := 1
k+1 . The key

difference to Q-learning is that SQL uses a more aggressive learning rate for the third term.
Changing the third summand to αk(TkQk(x, a)−TkQk−1(x, a)) would simplify to standard
Q-learning (3.1). The difference seems small; however, it yields faster convergence, which
is very noticeable in experimental results, see Section 5.1.
In fact, for the sequence obtained by (3.3) we have

P [‖Q∗ −QT ‖∞ ≤ ε] ≥ 1− δ for T = Ω
(
β2Vmax log 2n

δ

ε2

)
. (3.4)

Again, viewing β as the dominant term we have a sampling complexity of Õ(nβ4/ε2).

Because of this performance improvement we will extend the analysis of SQL to categorical
distributions, rather than standard Q-learning. However, it is worth mentioning that the
main idea of the proof is also applicable if one uses (3.1).

3.2 Speedy Categorical Policy Evaluation

In order to translate SQL to categorical distributions, we combine (3.3) and (2.3) for the
evaluation of a fixed policy π, i.e.,

η
(x,a)
k+1 = η

(x,a)
k + αk(ΠCT πk η

(x,a)
k−1 − η

(x,a)
k) + (1− αk)(ΠCT πk η

(x,a)
k −ΠCT πk η

(x,a)
k−1). (3.5)

The two initial return distribution functions are assumed to be the same, i.e., η0 = η−1 ∈
Pz. Like in the value-based algorithm, we also use a fixed linear stepsizes αk := 1

k+1 .
T πk is the stochastic Bellman operator at time k, which depends on samples x′k ∼ p(·|x, a),
a′k ∼ π(·|x′k), and the reward sample rk(x, a) ∼ R(x, a) for each (x, a) ∈ X ×A . In terms
of the cumulative distribution function the operator can be written as

FT π
k
η(x,a)(z) = F

η
(x′
k
,a′
k

)(
z − rk(x, a)

γ
), (3.6)

13

which is a random variable for all z ∈ R and we have FT πη(x,a)(z) = E
[
FT π

k
η(x,a)(z)

]
, see

equation (1.2). It is easy to see that (3.5) can be rewritten as a convex combination

η
(x,a)
k+1 = k

k + 1η
(x,a)
k + 1

k + 1Dk[ηk, ηk−1](x,a),

where we define the sample update as

Dk[ηk, ηk−1](x,a) := kΠCT πk η
(x,a)
k − (k − 1)ΠCT πk η

(x,a)
k−1 .

Note that it is ad-hoc not clear whether the η(x,a)
k obtained by (3.5) are in fact probability

measures. Writing η
(x,a)
k+1 as a convex combination of the current distribution and the

sample update distribution reduces the problem to showing that Dk[ηk, ηk−1](x,a) is a
probability measure for all k. In general, both η(x,a)

k and Dk[ηk, ηk−1](x,a) are finite signed
measures. The consideration of this problem makes up a substantial part of the analysis
in Section 3.2.2. In Lemma 3.7 it is proved that we indeed have probability measures.
We call the described method speedy categorical policy evaluation (SCPE), which is sum-
marised in Algorithm 2.

Algorithm 2 Synchronous Speedy Categorical Policy Evaluation (SCPE)

1: Require: η(x,a)
k =

∑N
i=1 p

(x,a)
k,i δzi for fixed atoms z1, . . . zN

2: Input: discount factor γ, policy π, number of iterations T , initial guess η0
3: η−1 ← η0
4: for k ∈ 0, . . . , T − 1 do
5: αk ← 1

k+1
6: for (x, a) ∈ X ×A do
7: Sample x′k ∼ p(·|x, a), a′k ∼ π(·|x′k), rk ∼ R(x, a)
8: T πk η

(x,a)
k ←

∑N
i=1 p

(x′k,a
′
k)

k,i δrk+γzi # Bellman update
9: T πk η

(x,a)
k−1 ←

∑N
i=1 p

(x′k,a
′
k)

k−1,i δrk+γzi # Bellman update
10: # Project onto support z1, . . . zN and calculate difference
11: D(x,a)

k ← kΠCT πk η
(x,a)
k − (k − 1)ΠCT πk η

(x,a)
k−1

12: # Update η
13: η

(x,a)
k+1 ← (1− αk)η

(x,a)
k + αkD

(x,a)
k

14: end for
15: end for

3.2.1 Complexity of SCPE

For the complexity results we make almost exactly the same assumptions as [10] but, of
course, in terms of categorical distributions.

Assumption 1. The state-action space is finite with n = |X ×A| elements. The rewards
are bounded by Rmax. The discount factor γ is smaller than 1 and let β̄ := 1

1−√γ . Let
Vmax := 1

1−γRmax be the maximal attainable return. The N fixed atoms cover all returns,
z1 = −Vmax, zN = Vmax. The categorical distribution ηC is the unique fixed point of ΠCT π.
Lastly, the two initial return distribution functions are equal η−1 = η0 and ηk are obtained
by update rule (3.5).

14

Theorem 3.2. Under Assumption 1, with probability at least 1− δ, the inequality

`2(ηC , ηT) ≤
√

2Vmaxβ̄

√γ
T

+

√
2 log 2nN

δ

T

holds.

Corollary 3.3. Under Assumption 1, for any 0 < ε ≤
√
Vmax, after

T =
6.53β̄2Vmax log 2nN

δ

ε2

steps of SCPE, `2(ηC , ηT) ≤ ε holds with probability at least 1− δ.

Corollary 3.4. Under Assumption 1, ηT converges to ηC almost surely in `2.

Before proving Theorem 3.2 in the next section, let’s compare the complexity to the value-
based method. For each timestep k the algorithm sweeps over the entire state-action
space, so after T iterations, a total of 3nT samples (reward, next state, next action) are
taken. For γ close to 1, we have β̄ ≈ 2β. Recall that Vmax = βRmax. Therefore, the
sample complexity of SCPE is Õ(nβ3/ε2) (omitting the logarithmic factor). The number
of atoms N only contributed to the logarithmic factor. Thus, increasing the accuracy of
the distribution approximation causes only a small performance penalty.
Further, SCPE has essentially the same sample complexity as value-based SQL, which
is Õ(nβ4/ε2). The difference in the exponent of β stems from the fact that a different
metric was used. This is quite an interesting result. We do not need more samples when
modelling the entire distribution. However, the computational complexity is higher with
Õ(nNβ3/ε2) as one has to loop over all atoms when updating the return distributions.
The space complexity is also higher with Θ(nN) because N atoms have to be stored for
all (x, a) ∈ X ×A.

3.2.2 Analysis

The analysis will follow the outline of [10]. Since in DRL the return distributions depend
on state, action and reward samples, it is imperative to extend the notion of random
variables to random distributions. We define signed random measures according to [11].

Definition 3.5. Let (Ω,A,P) be a probability space and define

M := {ν signed measure on (R,B) : |ν(B)| <∞ for all bounded B ∈ B},

where B is the Borel-σ-field on R. M is equipped with the σ-fieldM, which is the smallest
σ-field such that ν 7→ ν(B) is measurable for all B ∈ B.
Measurable functions X : (Ω,A,P) → (M,M), ω 7→ Xω are called signed random mea-
sures.
The expected measure E [X] ∈M is given by

E [X] (A) := E [X(A)] , where X(A) : Ω→ R, ω 7→ Xω(A).

Further, FX(z) := ω 7→ FXω(z) is a random variable for all z ∈ R and we have

FE[X](z) = E [X] ((−∞, z]) = E [X(−∞, z]] = E [FX(z)] . (3.7)

The set of all signed random measures on E ⊆M is denoted by

P(E) := {f : (Ω,A,P)→ (E,M |E) measurable}.

15

Step 1. Stability
As mentioned, we do not know whether η(x,a)

k are indeed probability measures. For that
reason, we first define a vector space of finite signed measures, which allows us to freely
perform addition and scalar multiplication.

Definition 3.6. Let L be the set of finite signed Lebesgue-Stieltjes measures,

L = {ν signed measure : ∃Fν : R→ R right continuous,
ν((a, b]) = Fν(b)− Fν(a), lim

z→−∞
Fν(z) = 0, | lim

z→∞
Fν(z)| <∞}

L is a real vector space by defining

(aµ+ bν)(A) := aµ(A) + bν(A), µ, ν ∈ L, a, b ∈ R, A a measureable set. (3.8)

It follows immediately from (3.8) that

Faµ+bν = aFµ + bFν . (3.9)

The categorical distributions are also extended to a subspace of signed measures,

Pz ⊆ Lz :=
{

N∑
i=1

ciδzi : ci ∈ R
}
⊆ L.

The categorical projection operator ΠC can be easily applied to L,

ΠC : L → Lz, FΠCν(zi) = 1
zi+1 − zi

∫ zi+1

zi

Fν(z)dz, FΠCν(zN) = lim
z→∞

Fν(z). (3.10)

From (3.10) and (3.9), it is not difficult to see that ΠC : L → Lz still is a linear projection.
Furthermore, from characterisation (3.6) and (3.9) it follows that T πk : LX×A → LX×A is
a linear mapping.
Recall that P(Pz) is the set of random measures with values in Pz.

Lemma 3.7. For all k ≥ 0 it holds that Dk[ηk, ηk−1](x,a) ∈P(Pz) and η(x,a)
k ∈P(Pz).

Proof. This result is proved by induction. Since we only extended ΠCT πk to signed mea-
sures, it is still true that when passed a (random) probability measure ΠCT πk outputs a
random probability measure.
Recall that Dk[ηk, ηk−1] = kΠCT πk ηk−(k−1)ΠCT πk ηk−1. As the initial return distributions
are identical, we have

D0[η0, η−1](x,a) = ΠCT π0 η
(x,a)
−1 = ΠCT π0 η

(x,a)
0 .

D0[ηk, ηk−1](x,a) is a random probability measure and in P(Pz), since η(x,a)
0 ∈ Pz. Of

course, η(x,a)
0 ∈P(Pz) also.

Assume that Dk[ηk, ηk−1](x,a) and η
(x,a)
k are random probability measures. For the induc-

tion step we can relate Dk+1[ηk+1, ηk] to Dk[ηk, ηk−1] by observing that

Dk+1[ηk+1, ηk](x,a) = (k + 1)ΠCT πk+1η
(x,a)
k+1 − kΠCT πk+1η

(x,a)
k

= (k + 1)ΠCT πk+1(k

k + 1ηk + 1
k + 1Dk[ηk, ηk−1])(x,a) − kΠCT πk+1η

(x,a)
k

= kΠCT πk+1η
(x,a)
k + ΠCT πk+1Dk[ηk, ηk−1](x,a) − kΠCT πk+1η

(x,a)
k

= ΠCT πk+1Dk[ηk, ηk−1](x,a),

16

where we used the fact that ΠCT πk is linear. Thus, Dk+1[ηk+1, ηk](x,a) ∈P(Pz) also.

Since ηk+1 = k
k+1ηk + 1

k+1Dk[ηk, ηk−1] and Pz is a convex set, we have η(x,a)
k+1 ∈P(Pz).

Step 2. Error Martingal
The history of the algorithm at time time k can be captured in form of the filtration

Fk := σ-field generated by r1(x, a), x′1, a′1, . . . , rk(x, a), x′k, a′k, (x, a) ∈ X ×A.

The expected update is given by

D[ηk, ηk−1](x,a) := E
[
Dk[ηk, ηk−1](x,a)

∣∣∣Fk−1
] (3.6)= kΠCT πη(x,a)

k − (k − 1)ΠCT πη(x,a)
k−1 .

The error ε(x,a)
k and the cumulative error to the sample update E(x,a)

k are given by

ε
(x,a)
k := D[ηk, ηk−1](x,a) −Dk[ηk, ηk−1](x,a), E

(x,a)
k :=

k∑
j=0

ε
(x,a)
j .

Again, we can rewrite the update rule in terms of the expected update and the error as

η
(x,a)
k+1 = k

k + 1η
(x,a)
k + 1

k + 1(D[ηk, ηk−1](x,a) − ε(x,a)
k). (3.11)

It is not immediately clear how one can turn the errors into a martingal. The following
Lemma shows that we have to look at the cumulative distribution function at each atom.
Lemma 3.7 and Lemma 3.8 are the core results that allow us to extend the analysis of [10]
to categorical distributions. One can extend the result (3.2) from [7] in a similar fashion.

Lemma 3.8. ε(x,a)
k ∈P(Lz) and E(x,a)

k ∈P(Lz) for all k ≥ 0. For each atom zi it holds
that the cumulative distribution functions of the error εk evaluated at zi form a uniformly
bounded martingal difference sequence, i.e.,

∀k ≥ 0 : E
[
F
ε

(x,a)
k

(zi)
∣∣∣∣Fk−1

]
= 0,

∣∣∣∣Fε(x,a)
k

(zi)
∣∣∣∣ ≤ 1. (3.12)

Proof. By Lemma 3.7 Dk[ηk, ηk−1](x,a) ∈ P(Pz) holds. It follows from (3.7) that the
expected measure D[ηk, ηk−1](x,a) ∈ Pz. This makes ε(x,a)

k the difference of a random
probability measure in P(Pz) and a probability measure in Pz. So it is an element of
P(Lz). Further, E(x,a)

k is the sum of elements of P(Lz) and thus also in P(Lz).

By definition,

E
[
ε
(x,a)
k

∣∣∣Fk−1
]

= E
[
D[ηk, ηk−1](x,a) −Dk[ηk, ηk−1](x,a)

∣∣∣Fk−1
]

= D[ηk, ηk−1](x,a) − E
[
Dk[ηk, ηk−1](x,a)

∣∣∣Fk−1
]

= 0 ∈ Lz,

and therefore

E
[
F
ε

(x,a)
k

(zi)
∣∣∣∣Fk−1

]
= F

E
[
ε

(x,a)
k

∣∣∣Fk−1

](zi) = 0 ∈ R.

17

Furthermore, we have that

F
ε

(x,a)
k

(zi) = FD[ηk,ηk−1](x,a)(zi)− FDk[ηk,ηk−1](x,a)(zi)

is the difference of a real value in [0, 1] and a random variable with values in [0, 1]. This
makes it a random variable which is bounded by 1.

Step 3. Upper bound
The following lemma shows that ηk ≈ ΠCT πηk−1.

Lemma 3.9. For all k ≥ 1 it holds that

ηk = 1
k

(ΠCT πη0 + (k − 1)ΠCT πηk−1 − Ek−1).

Proof. The equation is proved by induction. The result holds for k = 1 since

η1 = D[η0, η−1]− ε0 = ΠCT πη−1 − ε0 = ΠCT πη0 − E0.

Assume that the equation holds for k ≥ 1. From the definition of D[ηk, ηk−1] and Ek it
follows that

ηk+1 = k

k + 1ηk + 1
k + 1(D[ηk, ηk−1]− εk)

= k

k + 1ηk + 1
k + 1(kΠCT πηk − (k − 1)ΠCT πηk−1 − εk)

= k

k + 1

(1
k

(ΠCT πη0 + (k − 1)ΠCT πηk−1 − Ek−1)
)

+ 1
k + 1(kΠCT πηk − (k − 1)ΠCT πηk−1 − εk)

= 1
k + 1(ΠCT πη0 + kΠCT πηk − Ek−1 − εk) = 1

k + 1(ΠCT πη0 + kΠCT πηk − Ek).

As Lz is a vector space, it is more convenient to work with norms instead of metrics. For
that matter, we define

‖ν‖`2 :=
(
N−1∑
i=1

(zi+1 − zi)Fν(zi)2 + Fν(zN)2
)1/2

(3.13)

for ν ∈ Lz. It is not difficult to see that ‖.‖`2 is a norm on Lz and induces the metric `2
on Pz. By taking the supremum over all state-action pairs this property extends to `2.
Further we define

‖ν‖`∞ := sup
(x,a)∈X×A

‖ν‖`∞ := sup
(x,a)∈X×A

max
1≤i≤N

|Fν(zi)|

for ν ∈ Lz. The inequalities

`2(µ, ν) = ‖µ− ν‖`2 ≤
√

2Vmax ‖µ− ν‖`∞ ≤
√

2Vmax (3.14)

18

hold for µ, ν ∈ Pz. Lastly, since ε(x,a)
k is the difference of a random probability measure

and a probability measure in Pz (see proof of Lemma 3.8), F
ε

(x,a)
k

(zN) = 0 and thus
F
E

(x,a)
k

(zN) = 0 also. The inequality

‖Ek‖`2 ≤
√

2Vmax ‖Ek‖`∞ (3.15)

follows from (3.13).

Lemma 3.10. For all k ≥ 1 it holds that

‖ηC − ηk‖`2 ≤
√
γβ̄

k

√
2Vmax + 1

k

k∑
j=1

√
γk−j ‖Ej−1‖`2 .

Proof. Again, this is proved by induction. We use the fact that ΠCT π is a √γ-contraction
in `2 (Proposition 2.5), plug in the equality from Lemma 3.9 and apply the norm inequality
(3.14).
For k = 1 the inequality holds as

‖ηC − η1‖`2 = ‖ΠCT πηC −ΠCT πη0 + E0‖`2
≤ √γ ‖ηC − η0‖`2 + ‖E0‖`2
≤ √γ

√
2Vmax + ‖E0‖`2 ≤

√
γβ̄
√

2Vmax + ‖E0‖`2 .

Assume that the equation holds for k ≥ 1. It also holds for k + 1 as

‖ηC − ηk+1‖`2

=
∥∥∥∥ΠCT πηC − 1

k + 1(ΠCT πη0 + kΠCT πηk − Ek)
∥∥∥∥
`2

=
∥∥∥∥ 1
k + 1(ΠCT πηC −ΠCT πη0) + k

k + 1(ΠCT πηC −ΠCT πηk) + 1
k + 1Ek

∥∥∥∥
`2

≤
√
γ

k + 1 ‖ηC − η0‖`2 +
k
√
γ

k + 1 ‖ηC − ηk‖`2 + 1
k + 1 ‖Ek‖`2

≤
√
γ

k + 1
√

2Vmax +
k
√
γ

k + 1

√γβ̄
k

√
2Vmax + 1

k

k∑
j=1

√
γk−j ‖Ej−1‖`2

+ 1
k + 1 ‖Ek‖`2

=

√
γ−√γ2

1−√γ

k + 1
√

2Vmax +
√
γ2β̄

k + 1
√

2Vmax + 1
k + 1

k+1∑
j=1

√
γk+1−j ‖Ej−1‖`2

=
√
γβ̄

k + 1
√

2Vmax + 1
k + 1

k+1∑
j=1

√
γk+1−j ‖Ej−1‖`2 .

Step 4. Bounding the error in probability

Lemma 3.11 (Maximal Hoeffding-Azuma Inequality [10]). Let V = {V1, V2, . . . , VT } be a
martingal difference w.r.t. to the filtration Fk (E [Vk|Fk−1] = 0) such that V is uniformly
bounded by L > 0, then for any ε > 0 the inequality

P
[

max
1≤k≤T

∣∣∣∣∣
k∑
i=1

Vi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−ε2

2TL2

)

holds.

19

Lemma 3.12. For all ε > 0 and all timesteps T , the inequality

P
[

max
1≤k≤T

‖Ek−1‖`∞ > ε

]
≤ 2nN exp

(
−ε2

2T

)

holds.

Proof. Fix (x, a) ∈ X ×A and define

Eik := F
E

(x,a)
k

(zi) =
k∑
j=0

F
ε

(x,a)
j

(zi).

By Lemma 3.8, Vj = F
ε

(x,a)
j

(zi), j = 0, . . . , T , is a martingal difference sequence w.r.t Fj
and uniformly bounded by 1. Therefore, we can apply the maximal Hoeffding-Azuma
inequality, which takes the form

P
[

max
1≤k≤T

|Eik−1| > ε

]
≤ 2 exp

(
−ε2

2T

)
.

By taking the union over all atoms we have

P
[

max
1≤k≤T

∥∥∥E(x,a)
k−1

∥∥∥
`∞

> ε

]
= P

[
max

1≤k≤T
max

1≤i≤N
|Eik−1| > ε

]

= P
[
N⋃
i=1

{
max

1≤k≤T
|Eik−1| > ε

}]

≤ 2N exp
(
−ε2

2T

)
.

Similarly, taking the union over all (x, a) ∈ X ×A, we have

P
[

max
1≤k≤T

‖Ek−1‖`∞ > ε

]
≤ 2nN exp

(
−ε2

2T

)
.

Step 5. Concluding the proof

Proof of Theorem 3.2. By Lemma 3.10 and inequality (3.15), we find

‖ηC − ηT ‖`2 ≤
√
γβ̄

T

√
2Vmax + 1

T

T∑
k=1

√
γT−k ‖Ek−1‖`2

≤
√
γβ̄

T

√
2Vmax + β̄

T

√
2Vmax max

1≤k≤T
‖Ek−1‖`∞ .

By Lemma 3.12 the inequality

P
[

max
1≤k≤T

‖Ek−1‖`∞ > ε

]
≤ 2nN exp

(
−ε2

2T

)
=: δ.

holds. Setting δ as above and solving for ε yields

P

 max
1≤k≤T

‖Ek−1‖`∞ ≤

√
2T log 2nN

δ

 ≥ 1− δ.

20

Therefore, with probability at least 1− δ we have

`2(ηC , ηT) = ‖ηC − ηT ‖`2 ≤
√

2Vmaxβ̄

√γ
T

+

√
2 log 2nN

δ

T

 .

Proof of Corollary 3.3. Write T = Cβ̄2Vmax log 2nN
δ

ε2 , assume t := β̄2Vmax log 2nN
δ

ε2 ≥ 1 and so
1
t ≤

1√
t
.

For C = 2 +
√

2 + 2
√

1 +
√

2 ≤ 6.53 it follows that

`2(ηC , ηT) ≤ ε
√

2

 √
γ

C
√

log 2nN
δ

+
√

2
C

 ≤ ε√2
(

1
C

+
√

2
C

)
≤ ε.

Proof of Corollary 3.4. After rearranging we have

P
[
`2(ηC , ηT) > ε

]
≤ 2nN exp

(√
γε

√
2Vmaxβ̄

− γ

2T −
Tε2

4Vmaxβ̄2

)
.

As γ
2T ≥ 0, we can omit this term. Since exp

(
− ε2

4Vmaxβ̄2

)
< 1, we have an inequality of

form
P
[
`2(ηC , ηT) > ε

]
≤ CqT , C > 0, 0 < q < 1.

Therefore
∑∞
T=0 P

[
`2(ηC , ηT) > ε

]
< ∞ and by the Lemma of Borel-Cantelli we have

almost sure convergence.

3.3 Policy Control

In the previous section we only considered a fixed policy π and analysed the convergence
to the fixed point of ΠCT π. If we try to extend the result to the control case, where in
each timestep actions are chosen such that the expected return is maximised, we run into
following problems:

i) First and foremost, ΠCT : PX×Az → PX×Az is not a contraction in `2. [2] showed that
T is not a contraction in wp, see Section 1.2.2, and their provided counterexample
also shows that the operator is not a contraction in `2. Thus, the proof of Lemma
3.10 would be incorrect if we simply swap ΠCT π for ΠCT .

ii) Let πk be the greedy policy with respect to ηk such that ΠCT ηk = ΠCT πkk ηk. The
update rule for the control case can then be rewritten as

ηk+1 = ηk + αk(ΠCT
πk−1
k ηk−1 − ηk) + (1− αk)(ΠCT πkk ηk −ΠCT

πk−1
k ηk−1). (3.16)

Let’s revisit the proof of Lemma 3.7. The sample update Dk+1[ηk+1, ηk](x,a) cannot
be directly related to Dk[ηk, ηk−1](x,a) anymore, as we have

Dk+1[ηk+1, ηk](x,a)

= (k + 1)ΠCT
πk+1
k+1 η

(x,a)
k+1 − kΠCT πkk+1η

(x,a)
k

= (k + 1)ΠCT
πk+1
k+1 (k

k + 1ηk + 1
k + 1Dk[ηk, ηk−1])(x,a) − kΠCT πkk+1η

(x,a)
k

= kΠCT
πk+1
k+1 η

(x,a)
k + ΠCT

πk+1
k+1 Dk[ηk, ηk−1](x,a) − kΠCT πkk+1η

(x,a)
k .

21

But if πk+1 6= πk, this is in general not equal to ΠCT
πk+1
k+1 Dk[ηk, ηk−1](x,a) and the

stability result does not hold anymore.

iii) We can fix the stability problem by transforming (3.16) into

ηk+1 = ηk + αk(ΠCT πkk ηk−1 − ηk) + (1− αk)(ΠCT πkk ηk −ΠCT πkk ηk−1). (3.17)

Unfortunately, now Lemma 3.9 does not hold as we have

ηk = 1
k

(ΠCT π0η0 + (k − 1)ΠCT πk−1ηk−1 − Ek−1)

+ 1
k

k−1∑
j=0

(j − 1)(ΠCT πj−1ηj−1 −ΠCT πjηj−1).

However, if the policy is stable after a certain time, the second terms becomes small
and we have ηk ≈ ΠCT πk−1ηk−1 again.

There seems to be no straightforward way to solve the above problems. However, experi-
mental results using the stable update rule (3.17) empirically showed the same convergence
characteristics as in policy evaluation, see Section 5.1.

22

Chapter 4

Safe Reinforcement Learning

Thus far, we only considered the standard RL goal of maximising the expected return. In
the tabular case, categorical DRL methods solving this objective are equivalent to their
corresponding value-based methods in the sense that they yield the same policies, see
Proposition 2.3.
However, even if the agent performs optimally with respect to the expected value, in prac-
tice, rare occurrences of large negative outcomes can still happen (consider the motivating
example of Section 1.2.1).
As we model the entire distribution of the return in DRL, it seems natural to base policies
on more than just the expected value. This way one would hope to achieve risk-averse
behaviour of the agent. It turns out that incorporating risk measures in RL is a difficult
task. Reference [8] contains a comprehensive survey about current approaches to risk
aversion in RL and coined the term safe reinforcement learning as

“the process of learning policies that maximise the expectation of return in
problems in which it is important to ensure reasonable system performance
and/or respect safety constraints during the learning and/or deployment pro-
cesses.”

There are two areas in RL, where we can implement risk measures: in the optimisation
process and in the exploration process. In the following, only the former will be considered.

4.1 Risk-Sensitive Optimisation Criteria

Risk measures in the optimisation process can be introduced by simply replacing the
optimisation objective. Three common optimisation criteria will be discussed which can
be used instead of the expected reward maximisation [8].

Worst-Case Criterion. This approach aims to maximise the expected return with
respect to the worst case scenario. One can write this objective as

max
π∈Π

min
ω∈Ωπ

Eω

[∞∑
t=0

γtR(xt, at)
]
,

where Π is the set of all policies and Ωπ is the set of all possible trajectories ω =
(x0, a0, x1, a1, . . .) following the policy π.
One immediate drawback of this objective is the fact that very rare events with nega-
tive outcome have a big effect on the policy. So, this objective is often too pessimistic

23

and algorithms which compromise between the optimism of the expected return and the
pessimism of the worst case return can be used instead.

Risk-Sensitive Criterion. In this approach a risk-sensitivity parameter β ∈ R controls
the desired level of risk. β = 0 implies risk neutrality, β < 0 implies a risk-seeking and
β > 0 a risk-averse behaviour.
One option is the use of exponential utility functions. Here the objective is

max
π∈Π
− 1
β

logEπ [exp (−βR)] = max
π∈Π
− 1
β

logEπ

[
exp

(
−β

∞∑
t=0

γtRt

)]
,

where Eπ [.] denotes that the returns are obtained by following the policy π. Performing
a Taylor expansion yields

max
π∈Π
− 1
β

logEπ [exp (−βR)] = max
π∈Π

Eπ [R]− β

2Vπ [R] +O(β2).

This shows that for β > 0 variability is penalized and for β < 0 variability is encour-
aged. Even though this method is the best analysed in literature, there are no model-free
algorithms, which would be required for RL.

A second option is a weighted sum of expected return and risk measure Ψ,

max
π∈Π

Eπ [R]− βΨ(R).

Possible risk measures could be the variance of the return or the probability of terminating
in an undesirable state. As shown above, using the variance as risk measure is essentially
equivalent to the exponential utility function approach. However, both methods provide
different perspectives for designing algorithms and mathematical analysis.

Constrained Criterion. The expected return is maximised subject to constraints,

max
π∈Π

Eπ [R] subject to hi(R) ≤ αi.

This is equivalent to constraining the set of policies to a subset Γ ⊂ Π and then maximising
the expected value over policies in Γ. Choices for constraints could be the restriction of
variance Vπ [R] ≤ α or a minimum threshold for the expected return Eπ [R] ≥ α.

4.2 Problems of Risk-Averse Policy Iteration

The policy iteration algorithm is a theoretical improvement scheme, where one tries to
create a better policy from a given policy π [23, Chapter 4]. This way one gets a chain of
policies, π1 � π2,� π3 � . . . , which converges to an optimal policy π∗ for the standard
RL objective. Generally, an optimal policy is one dominating every other policy, π � π∗.
In standard RL, a policy is better than another one if the expected return is greater in
each state,

π � π′ ⇐⇒ E [Zπ(x, π(x))] ≤ E
[
Zπ
′(x, π′(x))

]
for all x ∈ X . (4.1)

For a given policy π we can make a better one π′ by choosing

π′(x) ∈ arg max
a∈A

E [Zπ(x, a)] for all x ∈ X . (4.2)

24

Note that we simply ordered the actions according to their expected value and chose the
best one. Furthermore, we have E [Zπ(x, π(x))] ≤ E [Zπ(x, π′(x))] for all states. This
inequality means that following π′ for only one decision and then π thereafter gives a
better expected return. It turns out that this fact is sufficient to guarantee that the new
policy π′ is in indeed better.

Theorem 4.1 (Policy improvement theorem). Let π and π′ be two policies such that

∀x ∈ X : E [Zπ(x, π(x))] ≤ E
[
Zπ(x, π′(x))

]
.

Then π � π′, i.e.,

∀x ∈ X : E [Zπ(x, π(x))] ≤ E
[
Zπ
′(x, π′(x))

]
.

As we model the entire return distribution in DRL, it seems reasonable to try to establish
decision rules similar to (4.2), which aim to achieve risk-averse objectives. This yields a
new class of policies, which can be defined as follows [5].

Definition 4.2. Risk-sensitive policies are policies which depend upon more than the
mean of the outcomes.

Let’s consider some risk-averse decision rules:

• For the worst-case criterion, we could maximise a quantile q close to 0, i.e.,

π′(x) ∈ arg max
a∈A

F−1
Zπ(x,a)(q). (4.3)

• For the risk-sensitive criterion, we could simply consider the weighted sum of ex-
pected value and standard deviation with parameter β > 0, i.e.,

π′(x) ∈ arg max
a∈A

E [Zπ(x, a)]− β
√
V [Zπ(x, a)]. (4.4)

• For the constrained criterion, we could specify a risk parameter ρ such that elements
of the set Aρ(x) := {a ∈ A : P [Zπ(x, a) < 0] ≤ ρ} are considered safe actions at x,
as they yield a negative reward with only small probability. Then we choose

π′(x) ∈
{

arg maxa∈Aρ(x) E [Zπ(x, a)] if Aρ(x) 6= ∅,
arg mina∈AP [Zπ(x, a) < 0] otherwise.

(4.5)

For these decision rules we order policies analogously to (4.1) and (4.2). The question
arises whether or not these rules result in policy improvement. For example, the last one
only makes sense if there is only one final reward in a trajectory. Reference [21] established
a framework that allows us to investigate this problem.

Definition 4.3. For a MDP 〈X ,A, R, P 〉 let ΩX denote the set of all random trajectories
starting in the random state X, i.e.,

ΩX = {(X0, A0, X1, A1, . . .) : X0 = X, At ∈ A, Xt+1 ∼ P (·|Xt, At)}.

Here, At are also considered to be random variables with values in A.

25

The preference over actions can be abstracted by considering an order over the random
trajectories. That is, for each random state X we have an order relation (ΩX ,�X). For
now, we only assume reflexivity and transitivity of �X .

For example, in standard RL the trajectory ω1(x) = (x,A1,0, X1,1, A1,1, . . .) is better than
trajectory ω2(x) = (x,A2,0, X2,1, A2,1, . . .) if the expected (discounted) return is greater,
i.e.,

ω1(x) �x ω2(x)⇔ E
[∞∑
t=0

γtR(X1,t, A1,t)
]
≤ E

[∞∑
t=0

γtR(X2,t, A2,t)
]
.

Definition 4.4. For each (stationary) deterministic policy π and initial state x there
exists one corresponding random trajectory

ωπ(x) := (X0, A0, X1, A1, . . .), X0 = x, At = π(Xt), Xt+1 ∼ P (·|Xt, At)

in Ωx. The order relations at each state �x naturally induce the order

π � π′ :⇐⇒ ωπ(x) �x ωπ
′(x) for all x ∈ X

on the set of deterministic policies. An optimal policy is then a policy π∗ such that π � π∗
for all policies π.

The policy iteration algorithm can now be written in terms of the orders �x. As previously,
we want to find a new policy such that using it only for first decision and then using the
old one thereafter yields a better performance.
For a given policy π choose π′ such that

ωπ(x) �x ωπ(x, π′(x)) := (x, π′(x), X1, π(X1), X2, π(X2), . . .), (4.6)

where X1 ∼ P (·|x, π′(x)) and Xt+1 ∼ P (·|Xt, π(Xt)).

Now we can answer the question under which conditions we have policy improvement
(π � π′) and convergence to an optimal policy [21].

Theorem 4.5. Assume that the relations �X satisfy the following conditions:
For all ω1, ω2, ω3 ∈ ΩX

i) (reflexive) ω1 �X ω1

ii) (complete) either ω1 �X ω2 or ω2 �X ω1,

iii) (transitive) ω1 �X ω2 and ω2 �X ω3 implies ω1 �X ω3,

iv) (monotonicity) if ω1 �X ω2, then (X ′, A′, ω1) �X′ (X ′, A′, ω2) for all random states
X ′ and random actions A′ such that X ∼ P (·|X ′, A′).

v) (countable transitivity) For a random state X let ωj = (X,Aj,1, Xj,2, Aj,2, . . .) ∈ ΩX

such that ωj matches ω0 up to state j (Aj,k = A0,k and Xj,k = X0,k for all k ≤ j).
If ω1 �X ω2 �X ω3 . . . , then ωj �X ω0 for all j.

Then policies obtained by (4.6) satisfy π � π′. Furthermore, if the state and actions space
is finite, the sequence converges to an optimal policy in a finite number of steps.

26

Conditions i) to iii) are standard for order relations. However, conditions iv) and v)
are highly restrictive. Finding a risk-averse action ordering that guarantees improvement
seems unlikely. In the following, three MDPs (found with a computer program) will be
presented, which show that the rules (4.3), (4.4) and (4.5) indeed do not lead to global
policy improvement. This conclusion seems very disappointing; however, applying the
rules in practice achieved surprisingly good results, see Section 5.2.

1

2

0.80.
5

1.
0

0.2, p− = 0.5

0.5, p− = 0.0

(a) Worst-Case Criterion

1

2

0.30.
5

0.
3

0.7, p− = 0.9

0.5, p− = 1.0

0.7, p− = 0.5

(b) Variance Penalized Criterion

1

2

0.30.
5

0.
3

0.7, p− = 0.4

0.5, p− = 0.0

0.7, p− = 0.1

(c) Probability Constrained Case

Figure 4.1: Three MDPs with random state transitions (edge weights denote transition
probability). In state 2 there are two possible actions (a1 solid and a2 dashed line). When
transitioning to a terminal state rewards are either −1 or +1, otherwise 0. p− is the
probability of the negative reward.

Consider the MDP in Figure 4.1a and decision rule (4.3) with q = 0.2. We assume no
discounting, γ = 1. As rewards are only given when transitioning to a terminal state, we
can calculate the probability of return −1 when choosing action a1 in state 2 by solving
p1 = 0.2 · 0.5 + 0.8p2, p2 = 0.5p1. We have p1 = 1/6 and p2 = 1/12. Recall that
F−1
Z (q) = inf{t : FZ(t) ≥ q} and as both values are smaller than 0.2, the q-quantiles at

both states are equal to 1.0. So from the point of state 2 both actions look equivalent by
rule (4.3). But it is clear that choosing a2 yields p1 = p2 = 0.5, so both q-quantiles are
equal to −1.0. Even though both actions looked equivalent, we got worse performance
and policy improvement does not hold.

Now lets consider the MDP in Figure 4.1b and rule (4.4) with β = 1 and discount factor
γ = 0.9. One can calculate the expected return and the variance of the return by solving
a system of linear equations, see [22]. The calculations are omitted for the sake of brevity.
When choosing a1 we have expected returns v1 ≈ −0.7911 and v2 ≈ −0.856 with standard
deviations s1 ≈ 0.5341 and s2 ≈ 0.3692. When choosing a2 for one decision and then a1
thereafter, we have an expected return of v̄2 = 0.7 · 0.0 + 0.3γv1 ≈ −0.2136 with standard
deviation s̄2 = (0.7 · (1.02 + 0.02) + 0.3γ2(s2

1 + v2
1)− v̄2

2)1/2 ≈ 0.9358 in state 2 (formula for

27

variance of mixture distribution; transitioning to terminal state has expected return 0.0
with variance 1.0). By rule (4.4) we would choose a2. However, choosing a2 every time
yields v1 ≈ −0.604 with s1 ≈ 0.7482, which is not an improvement.

Lastly, consider the MDP in Figure 4.1c and rule (4.5) with ρ = 0.2. We assume γ = 0.9.
Again, as rewards are only given when transitioning to a terminal state, we can calculate
the probabilities of a negative reward (choosing a1) by solving p1 = 0.7 · 0.4 + 0.3p2,
p2 = 0.5p1. We get p1 ≈ 0.3294 and p2 ≈ 0.1647. Solving for the expected return gives
v1 ≈ 0.313 and v2 ≈ 0.6409. By rule (4.5) we would choose a2 as 0.7 · 0.1 + 0.3 · p1 ≤ ρ
and 0.7 · 0.8 + 0.3γv1 ≥ v2 (0.8 is the expected reward when transitioning to the bottom
right terminal state). But choosing a2 yields p1 ≈ 0.3308, which means that we just got a
riskier policy, thus no global improvement.

4.3 Current Approaches to Risk-Averse DRL

Modelling the return distribution provides many possibilities to incorporate risk measures
in the learning process. As great advances in both the theoretical and practical side of
DRL were made in the last three years, including risk-aversion strategies in DRL is subject
of active research.

There are approaches that make use of risk-averse action selection. Reference [5] approxi-
mates the quantile function with a neural network. Actions are then selected to maximise
the expected value distorted by a continuous monotonic function β : [0, 1]→ [0, 1],

π′(x) ∈ arg max
a∈A

Eβ [Zπ(x, a)] = arg max
a∈A

∫
R
z
∂

∂z
(β ◦ FZπ(x,a))(z)dz.

The function β is called distortion risk measure and it is known that this decision rule is
equivalent to maximising the expected value of some utility function.
Recent work [12] uses the conditional value at risk (CVAR), a popular risk measure in
finance which is loosely speaking the expected value of the tail of a distribution,

π′(x) ∈ arg max
a∈A

CVARα(Z̃π(x, a)) = arg max
a∈A

E
[
Z̃π(x, a)

∣∣∣ Z̃π(x, a) ≤ F−1
Z̃π(x,a)(α)

]
.

Before applying the CVARα, the return distribution is transformed to accelerate conver-
gence, denoted by Z̃π(x, a). It is worth mentioning that also categorical distributions were
used as approximation method.
In both mentioned papers sophisticated algorithms were developed which achieved good
experimental results. However, these methods should be subject to the same scepticism
as discussed in the precious section and theoretical guarantees are much needed.

Another recent work [15] considers risk-aversion as a secondary objective. When actions
appear equivalent under the expected return, the one is chosen which stochastically dom-
inates the others (in the second order),

Zπ(x, a) �(2) Z
π(x, π′(x)) ⇐⇒ ∀α ∈ R :

∫ α

−∞
FZπ(x,a)(z)dz ≤

∫ α

−∞
FZπ(x,π′(x))(z)dz.

An implication of this choice is that Zπ(x, π′(x)) has the lowest variance amongst its
contenders. Even though it is argued that equivalence in the expected outcome is frequent
in financial optimisation, the applicability in other domains is questionable.

28

Another popular approach to safe RL are policy gradient methods. Here we directly ap-
proximate the policy with a differentiable function, πθ, and use stochastic gradient ascen-
t/descent methods to move towards a policy, which achieves (local) optimal performance
for a certain objective.
Reference [1] describes a template for solving risk-constrained optimisation objectives of
form

max
θ

E [Zπθ(x0)] subject to Ψ(Zπθ(x0)) ≤ α

for an initial state x0, return distribution Zπθ(x0) = Zπθ(x0, πθ(x0)) and arbitrary risk
measure Ψ (like variance or CVAR). This objective can be brought in a relaxed form

max
λ

max
θ

(E [Zπθ(x0)] + λ(Ψ(Zπθ(x0))− α))

using a Lagrangian approach. For such problems convergence to an local optimal policy can
be established; however, estimating the policy gradient of the risk measure is challenging.
In the recent paper [20] the CVAR is estimated and a method called sample-based distri-
butional policy gradients (SDPG) is employed in an actor-critic policy gradient algorithm.
Again, experimental results indicate the advantages of this method but convergence results
remain to be established.

In summary, there are many perspectives on safe DRL. Even though the proposed methods
are theoretically sound and yield impressive empirical results, there seems to be lack of
convergence results. It will be interesting to follow the development of the mathematical
theory in the future.

29

Chapter 5

Experimental Results

5.1 Combination Lock

Consider the combination lock environment [9]. Here we have a set of 500 states xi, which
are arranged in a chain. In each state we can choose between two actions LEFT and RIGHT,
see Figure 5.1. Choosing RIGHT takes us to state xi+1 but yields a reward of −0.01. Taking
LEFT brings us to a previous state with probability p(xk|xi, LEFT) ∝ 1

i−k and yields reward
0. Transitioning to the goal state x500 gives +15 reward.

x1 ... xi−1 xi xi+1 ... x500
RIGHT

LEFT

Figure 5.1: Combination lock environment

The action RIGHT brings us closer to the goal state but yields a negative reward, whereas
the action LEFT has no immediate negative reward but moves us further from x500. The
rewards are setup such that choosing RIGHT in all states is the optimal policy. This makes
an interesting control problem because the long chain has to be essentially solved right to
left. It is also a good benchmark for policy evaluation because the trajectories are long
and when choosing LEFT there are a lot of possible successor states. For this reasons, the
complexity analysis of Section 3.2 is tested on this environment.

For the experiment, the SCPE algorithm (Algorithm 2) with a discount factor of γ = 0.999
(β̄ ≈ 2000) and 51 equally spaced atoms between −10 and 15 was used. For comparison,
the standard Q-learning update rule (2.3) with a polynomial learning rate 1/(k + 1)ω,
ω ∈ {0.55, 0.8, 1} was also tested in a synchronous fashion. The experiment was repeated
10 times for randomly generated initial distributions and the results were averaged. An
accurate estimation η̂C of ηC was obtained by performing 50 000 iterations.
In Figure 5.2a the convergence in the Cramér distance is compared to the convergence in
expectation. You can see `2(ηk, η̂C) in blue and sup(x,a) |EZ∼η(x,a)

k

[Z] − E
Z∼η̂(x,a)

C
[Z] | in

orange. The convergence in the Cramér distance is as fast if not faster than the convergence
in expectation which is backed up by the theoretical results in 5.1.
Furthermore, there is a great performance benefit if one chooses the SCPE update rule
over the standard Q-learning update rule, see Figure 5.2b. The plot closely resembles the
results of [9].

30

(a) Convergence in Cramér distance vs. Conver-
gence in expectation (b) SCPE and polynomial learning rates

Figure 5.2: Policy evaluation in the Combination Lock environment.

The same experiment was repeated for the control case. In Figure 5.3a you can see the
instability issue for the unchanged update rule as discussed in Section 3.3. However,
using the adjusted update rule (3.17) yields the same convergence characteristics as policy
evaluation, compare Figure 5.2b and 5.3b.

(a) Instabilities of unchanged update rule (b) Similar convergence to policy evaluation

Figure 5.3: Policy control in the Combination Lock environment.

5.2 Gridworld with Lake

Let’s consider the gridworld environment from the introduction again. Recall that the
environment only accepts the agents action 90% of the times, otherwise the agent will
be placed in a random direction. If the agent lands on a blue field, the lake, there is a
1% chance of drowning and receiving reward −100. The agent starts at cell S and the
objective is to reach cell G, which yields +100 reward. There is no reward otherwise.
Lastly, we have a discount factor of γ = 0.95.
The rewards, the drowning probability and the discount factor are carefully chosen such
that the optimal policy with respect to the expected return goes straight through the
lake. Equipped with the theoretical advantages and limitations of DRL, we like to try to
formulate an algorithm, which yields safer policies that avoid the lake.
The resulting Algorithm 3 is essentially distributional Q-learning with two key differences.
Firstly, we allow a more generic action selection, where the decision rules of Section 4.2
will be implemented. Secondly, we apply the algorithm in a synchronous fashion. That is,

31

we loop over the entire state-action space. This way we neglect the exploration process,
which allows us to compare the different decision rules on a fair basis.

Algorithm 3 Synchronous Risk-Averse Policy Control

1: Require: η(x,a) =
∑N
i=1 p

(x,a)
i δzi for fixed atoms z1, . . . zN

2: Input: discount factor γ, number of iterations T , initial guess η0
3: η ← η0
4: for k ∈ 0, . . . , T − 1 do
5: for (x, a) ∈ X ×A do
6: Sample x′k ∼ p(·|x, a), rk ∼ R(x, a)
7: a∗ ← greedy(η, x′k) # Risk-averse action selection
8: T πk η(x,a) ←

∑N
i=1 p

(x′k,a
∗)

i δrk+γzi # Bellman update
9: η(x,a) ← (1− αk)η(x,a) + αkΠCT πk η(x,a) # Update η

10: end for
11: end for

For the experiment, 51 equally spaced atoms on the interval [−100, 100] were used. The
initial guess η0 was generated randomly. Lastly, a total of T = 250 iterations were per-
formed with stepsize parameters αk = (1 + bk/32c)−1 (chosen through testing).

S G

(a) Worst-Case Criterion

S G

(b) Risk-Sensitive Criterion

S G

(c) Constrained Criterion

Figure 5.4: Resulting policies by performing risk-averse policy control in the gridworld.

Write Z(x, a) ∼ η(x,a). In Figure 5.4a the actions were selected with q ∈ {0.1, 0.01} by

π′(x) ∈ arg max
a∈A

F−1
Z (x,a)(q),

in Figure 5.4b with β ∈ {0.1, 0.5} by

π′(x) ∈ arg max
a∈A

E [Z (x, a)]− β
√
V [Z (x, a)],

and in Figure 5.4c with ρ ∈ {0.1, 0.01, 10−5} by

π′(x) ∈
{

arg maxa∈Aρ(x) E [Z (x, a)] if Aρ(x) = {a : P [Z (x, a) < 0] ≤ ρ} 6= ∅,
arg mina∈AP [Z (x, a) < 0] otherwise.

For parameters q = 0.1 and ρ = 0.1 the main trajectory of the resulting policy (red) goes
straight through the lake. This makes sense as going through the lake has approximately
9.5% chance of drowning. β = 0.1 also has the same result. The choice of q = 0.01,
β = 0.5 and ρ = 0.01 resulted in the blue paths. Here the objective of avoiding the lake
was successfully achieved (except at one cell in Figure 5.4a). Only with the constrained

32

criterion an even more risk-averse policy was obtained. The choice of ρ = 10−5 resulted
in an even greater detour around the lake (green trajectory in Figure 5.4c).
In summary, even though improvement in each step is not guaranteed (see Section 4.2),
risk-sensitive policies were achieved quite robustly with each decision rule.

5.3 Sepsis Treatment

Sepsis is the third leading cause of death worlwide and there have been efforts to find
optimal sepsis treatment strategies with RL methods [13]. Having detailed information
about the consequences of treatment decision is imperative in medical problems. There-
fore, the use of DRL methods is of great benefit. While the methodology of [13] met
criticism [4], we will follow their setup assuming it is valid and focus on the advantages of
using distributional algorithms.

Sepsis patient information was gained by querying the MIMIC-III (Medical Information
Mart for Intensive Care III) database. After preprocessing the data, a k-means clustering
was performed, resulting in 800 unique patient states. A simulator was created from
the clustered dataset which was used as environment for policy evaluation and control.
Treatment comprises the administration of intravenous fluids and vasopressors, which was
discretized into 25 possible actions. The recovery of a patient is rewarded by +100 and
the death of a patient penalized with −100.

As the simulator is modelled from patient state trajectories following the treatment deci-
sions of clinicians, choosing a random action in the simulator corresponds to a clinician’s
decision. Performing speedy policy evaluation for random actions with Algorithm 2 gives
interesting insights into the consequences of treatment decisions. Again, 51 equally spaced
atoms on the interval [−100, 100] were used and 1000 iterations were performed. As we
care more about the overall outcome, rather than immediate rewards, the discount factor
was set to γ = 0.99.
Results show that less than 1% of the clinicians’ actions predominantly lead to a negative
outcome (above 90% chance of the patient dying). Also about 1% of the actions had
a highly bimodal return distribution. These are actions, where a positive outcome is
almost as likely as a negative outcome. However, the majority of actions (≈ 67%) lead
predominantly to recovery but had also a not negligible probability (5% to 20%) of a
negative outcome. With a recovery probability over 95% around every seventh action
(≈ 14%) could be considered safe. In Figure 5.5 examples of the various discussed return
distributions can be seen.

Figure 5.5: Examples of return distributions when following the clinicians’ policy. From
left to right: negative outcome, bimodal distribution, slightly bimodal distribution, posi-
tive outcome.

33

Performing policy evaluation and policy improvement with respect to the expected return
iteratively yielded an optimal policy π∗. In Figure 5.6 you can see the approximated return
distributions at each initial state choosing actions according to π∗. Quite surprisingly, it
was possible to select actions such that from every initial state the recovery of the patient
is guaranteed with very little variance in the treatment length. Almost for every initial
state the return distribution is right skewed corresponding to fast patient recovery. There
are very few distributions which spike at zero. They correspond to erroneous states in the
simulator for which the agent had virtually no possibility of leaving the state and thus
remained in the state forever and never got any reward. From this result is clear that one
could not do any better using risk-sensitive policies.

Figure 5.6: Return distributions of the resulting agent for all initial states in gray and
average return distribution (weighted by the number of occurrence as initial state) in blue.
Average return distribution of the clinicians’ policy in red for comparison.

However, this performance was only achieved on the data the agent was trained on. There-
fore, a second simulator was created for evaluation purposes with patient state trajectories
unseen by the agent. Sadly, due to insufficient data and the problem of finding a good clus-
tering, the second simulator had very different state transition probabilities compared to
the first one and following the policy π∗ lead to many infinite episodes. In these episodes
the agent remained in the same state when choosing the action according to π∗, never
reaching a terminal state. To solve this problem, a stochastic policy was derived from
the return distributions of the deterministic one. This stochastic policy chooses the best
action 50% of the times, the second best 25% of the times and so on. The worst action
gets the remaining probability. The stochastic policy was more robust towards different
clusterings of the data and “kicked” the agent out of such looping states.

In order to test the performance of the resulting policy, 10 000 patient state trajectories
were simulated. With a mean return of 74.38 and a recovery rate of 91.88 the agent
outperformed the clinicians’ policy with a mean return of 63.54 and a recovery rate of
86.16 on both metrics. However, this is not the optimal performance achieved in the
training process. This is solely owed to the patient state representation by the clustering.
Experimenting with different state representation techniques remains for future work.

34

Chapter 6

Discussion

In many papers the experimental results of learning the return distribution with neural
networks when optimising for the expected return were celebrated. In this work, a partic-
ular DRL framework, modelling the return with categorical distributions, was reviewed.
Instead of considering function approximation methods, the focus was on tabular methods
and it was argued that the power of DRL lies in the ability of making decision based on
more than just the mean of outcomes.

In Chapter 3 it was shown that Q-learning-like tabular categorical DRL algorithms have
essentially the same sample complexity as their standard RL counterparts. This means
that we are able to gain significantly more information about the return from the same
number of state transitions observed by the agent. This novel theoretical result was
confirmed empirically in Section 5.1.

In Chapter 4 we concluded that even though the DRL framework allows many new possi-
bilities to incorporate risk measures in the learning process, unfortunately, simple policy
iteration approaches can not guarantee improvement and may lead to unintuitive policies.
A short, non-exhaustive survey showed that there is a very active research community
around risk-averse DRL; however, theoretical results are needed.

Unimpressed by the negative results about the aforementioned risk-averse policy iteration
methods, they were tested on a gridworld toy problem in Section 5.2. The objective of
detouring around a lake was achieved quite robustly, whereas standard RL methods would
go straight through the lake and risk drowning.

Furthermore, the application of DRL was considered in the high-stakes problem of sepsis
treatment. Policy control with respect to the expected return lead to an optimal treatment
policy with zero patient mortality on the training environment. Thus, there was no room
for improvement by using risk-sensitive policies. However, this conclusion could only be
made by having access to the approximate return distributions. Additionally, analysing the
return distributions gave detailed insights into the consequences of clinicians’ treatment
decisions.

Finally, distributional reinforcement learning is a very young research field and it will be
exciting to follow future developments.

35

Bibliography

[1] P. L. A. and M. C. Fu, Risk-sensitive reinforcement learning: A constrained opti-
mization viewpoint, CoRR, abs/1810.09126 (2018).

[2] M. G. Bellemare, W. Dabney, and R. Munos, A distributional perspective
on reinforcement learning, in Proceedings of the 34th International Conference on
Machine Learning – Volume 70, ICML’17, JMLR.org, 2017, p. 449–458.

[3] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[4] R. J. Bradford, C. J. Sangwin, S. P. Shashikumar, and S. Nemati, Does
the “Artificial Intelligence Clinician” learn optimal treatment strategies for sepsis in
intensive care?, CoRR, abs/1902.03271 (2019).

[5] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, Implicit quantile networks
for distributional reinforcement learning, in Proceedings of the 35th International
Conference on Machine Learning, J. Dy and A. Krause, eds., vol. 80 of Proceedings
of Machine Learning Research, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018, PMLR, pp. 1096–1105.

[6] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, Distributional
reinforcement learning with quantile regression, CoRR, abs/1710.10044 (2017).

[7] E. Even-Dar and Y. Mansour, Learning rates for Q-learning, J. Mach. Learn.
Res., 5 (2004), p. 1–25.

[8] J. Garćıa, Fern, and o Fernández, A comprehensive survey on safe reinforce-
ment learning, Journal of Machine Learning Research, 16 (2015), pp. 1437–1480.

[9] M. Ghavamzadeh, H. J. Kappen, M. G. Azar, and R. Munos, Reinforcement
learning with a near optimal rate of convergence, INRIA, 00636615v2 (2011).

[10] , Speedy Q-learning, in Advances in Neural Information Processing Systems 24,
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, eds.,
Curran Associates, Inc., 2011, pp. 2411–2419.

[11] O. Kallenberg, Random Measures, Theory and Applications, Springer, 2017.

[12] R. Keramati, C. Dann, A. Tamkin, and E. Brunskill, Being optimistic to be
conservative: Quickly learning a cvar policy, arXiv, abs/1911.01546 (2020).

[13] M. Komorowski, L. A. Celi, O. Badawi, A. C. Gordon, and A. A. Faisal,
The artificial intelligence clinician learns optimal treatment strategies for sepsis in
intensive care, Nature Medicine, 24 (2018), pp. 1716–1720.

36

[14] C. Lyle, P. S. Castro, and M. G. Bellemare, A comparative analysis of expected
and distributional reinforcement learning, CoRR, abs/1901.11084 (2019).

[15] J. D. Martin, M. Lyskawinski, X. Li, and B. Englot, Stochastically dominant
distributional reinforcement learning, arXiv, abs/1905.07318 (2019).

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Pe-
tersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, Human-level control through deep rein-
forcement learning, Nature, 518 (2015), pp. 529–533.

[17] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka, Non-
parametric return distribution approximation for reinforcement learning, in Proceed-
ings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, Madison, WI, USA, 2010, Omnipress, p. 799–806.

[18] , Parametric return density estimation for reinforcement learning, in Proceedings
of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI’10,
Arlington, Virginia, USA, 2010, AUAI Press, p. 368–375.

[19] M. Rowland, M. Bellemare, W. Dabney, R. Munos, and Y. W. Teh,
An analysis of categorical distributional reinforcement learning, in Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics,
A. Storkey and F. Perez-Cruz, eds., vol. 84 of Proceedings of Machine Learning Re-
search, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr 2018, PMLR, pp. 29–37.

[20] R. Singh, Q. Zhang, and Y. Chen, Improving robustness via risk averse distribu-
tional reinforcement learning, arXiv, abs/2005.00585 (2020).

[21] M. Sobel, Ordinal dynamic programming, Management Science, 21 (1975), pp. 967–
975.

[22] M. J. Sobel, The variance of discounted markov decision processes, Journal of Ap-
plied Probability, 19 (1982), p. 794–802.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, The
MIT Press, second ed., 2018.

[24] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Mach.
Learn., 16 (1994), p. 185–202.

[25] C. J. C. H. Watkins and P. Dayan, Q-learning, in Machine Learning, 1992,
pp. 279–292.

37

Statutory Declaration

I herewith declare that I wrote this thesis and performed the associated research myself,
using only literature cited in this volume. If text passages from sources are used literally,
they are marked as such.
I confirm that this work is original and has not been submitted elsewhere for any exami-
nation, nor is it currently under consideration for a thesis elsewhere.

Vienna, July 22, 2020

	Introduction
	Markov Decision Processes
	Distributional Reinforcement Learning
	The Return Distribution
	Distributional Bellman Equation and Operators

	Categorical Distributional Reinforcement Learning
	The C51 Algorithm
	Tabular Categorical DRL
	Alternative Approximation Methods
	Model-based Approximations
	Model-free Approximations

	Finite-Time Analysis
	Complexity of Q-Learning and Speedy Q-Learning
	Speedy Categorical Policy Evaluation
	Complexity of SCPE
	Analysis

	Policy Control

	Safe Reinforcement Learning
	Risk-Sensitive Optimisation Criteria
	Problems of Risk-Averse Policy Iteration
	Current Approaches to Risk-Averse DRL

	Experimental Results
	Combination Lock
	Gridworld with Lake
	Sepsis Treatment

	Discussion

